Friday, October 26, 2012

Kinematics: Study of motion



Includes the concepts of:
  • speed
  • velocity
  • acceleration
  • time
  • distance
  • displacement
Vectors: is a quantity which express both magnitude and direction.
  • magnitude is how big or how small a number is
  • direction is which way something is headed or directed.
  • example; velocity, displacement, force, accerleration
Scalars: is a quantity which express magnitude only 
  • no direction is specified
  • example; speed, mass, distance, energy

Distance: how far something has traveled
  • no direction is specified
  • commonly measure in meters, kilometers, and centimeters
  • is a scalar
Displacement: how far something is from its starting point
  • direction is specified
  • is a vector
 

Example: An object travel 20 meters west then 30 meters north.

                  a) What is the distance traveled?

                  b) What is the displacement?

Use Pythagorean Theorem: a^2 +b^2 = c^2
                    
                    a) Distance = 20 m +30 m = 50 m

                    b) Displacement = 20^2 +30^2 = x^2
                                                      (1300)   = x^2

                                               36.06 m = x (North West)


Speed: how fast something is traveling
  • speed is the distance covered in a given amount of time
  • is a scalar
   The formula for speed: s = d/t, s= speed, d = distance, t = time
    
Example 1) An object covered a distance of 75 kilometers in half an hour. What is the speed in a) kilometers/hour b) meters/second

     a) s = d/t = 75 kilometers / .5 h = 150 km/h
    
    b) (150 km)h * (1000 m)/ km * h/(3600 s) = 41.67 m/s 

Example 2) An object covered 450 m in 20 s. What is it speed in a) m/s b) km/h?
     a) s= d/t = 450 m/20 s = 22.5 m/s
     
     b) (22.5 m)s * km/ (1000 m) (3600 s)/h) = 81 km/h

Example 3) A rifle fire a bullet at a target. The speed of the bullet is 700 m/s. The target is located 250 meters away.
     a) How long does it take for the bullet to hit the target?
    b) What is the bullet speed in km/h?

     a) s = d/t => 700 m/s  = (250 m)/ t => 250 m*(1s/700 m) = (t/250m) *250 m => 250/700 = t, t = .35 secs.

   b) (700 m)/ s * (3600 s)/h * km/ (1000 m) = 2520 km/h

Velocity: how fast something is traveling and in what direction
  • is a vector
Example:
     a)  An object travel 45 m/s is a speed
     b)  An object travel 45 ms due south is a velocity

Acceleration: how fast speed or velocity changes
  • the rate at which speed or velocity changes
  • if an object speed up, it has a positive acceleration
  • if an object slowing down, it has a negative acceleration
The formula to calculate the acceleration is: a =  Δ's / t
  • Δ's is the change in speed, Δ is Delta
  • t is the time
  • the change in speed is calculate using sf - si
  • sf = the final speed
  • si = the initial speed
  • therefore a= (sf - si)/ t


Examples 1) A new Nissan GT-R 35, Spec V acceleration from 0 mph to 60 mph in 3.2 secs. What is it rate of acceleration?

     a = (sf - si) /t = (60 - 0) / 3.2 = 18.75 (m/h)/s, mph = miles per hour. So in 1 sec, the car go 18.75 miles per hour.



Example 2) A car goes from 20 m/s to 50 m/s in 10 s. What is the rate of acceleration?

     a = (sf - si) /t = (50-20)/ 10 = 3 m/s^2 

         (m/s) /s => m/s x 1/s = m/s^2







The average speed of a uniformly acceleration object:



Example:  If a car goes from 10 m/s to 30 m/s in 3 s.

     a) What is its acceleration rate?
        
         a = (sf - si)/t = (30 - 10) / 3 = 6.67 m/s^2


     b) What is it average speed over the 3 s interval?

                                                                        -
         The formula to calculate average speed: s = (si + sf) /2

= (10 + 30) / 2 = 40/2 = 20 m/s


Rearranging acceleration formulaa = (sf - si) /t 

  • First multiply both side by t => a*t = sf - si
  • Final speed of an object base on initial speed, acceleration and time. => sf = si +a*t

Example 1) An airplane traveling at 300 m/s accelerates uniformly at the rate of 12 m/s^2. What its speed be at the end of 30 secs?

     si = 3000 m/s     a = 120 m/s^2     t = 30 s     sf = ?

   sf = si + at = 300 m/s + (120 m/s^2) (30 s
                     = 300 m/s + 360 m/s = 660 m/s

Example 2) An automobile accelerate at the rate of 7.5 m/s^2. It goes from 15 m/s to 85 m/s. While it is accelerating, how long did it take to reach 85 m/s ?
     
     a = 7.5 m/s^2     si = 15 m/s     sf = 85 m/s     t = ?

     sf = si + at => 85 m/s = 15 m/s + (7.5 m/s^2) t
                             70 = 7.5 t, t =9.33 s


Distance based on si, a, and t: To calculate how far 
an object travels 

based on initial speed, acceleration rate, and time.

The following equation is used => d = si*t + (1/2) a t^2
  • d = distance traveled
  • si = initial speed
  • a = acceleration rate
  • t = time

Example 1) A rocket is accelerate from 300 m/s at 
the rate of 9.5 m/s^2 for 20 sec. 
     
     a)What is the rocket final speed?
     
          si = 300 m/s     a = 9.5 m/s^2     t = 20s
          
          sf = si + at = 300 m/s + 9.5 m/s^2 (20s)

                            = 300 m/s + 190 m/s = 490 m/s

     b) What is the distance traveled by the rocket during the 20 sec?

          d = si*t + (1/2) a t^2 = 300 m/s (20s) = (1/2)(9.5 m/s^2)(20s)^2

                                           = 6000 m + 1900 m  = 7900 m



Example 2) A rock is dropped off a bridge. Gravity 
accelerates falling objects at the rate of  9.8 m/s^2.

     a) If the rock fall for 5 sec, how far did it traveled?

          si = 0     a = 9.8 m/s^2     t= 5s

          d = (0) (5s) + (1/2)(9.8 m/s^2) (5s)^2
         
             =    0        + (9.8 x 25)/2 = 122.5 m

     b) How fast was it going at the end of 5 secs?   

          sf = si + at = 0 + (9.8 m/s^2) 5s =  49 m/s 





The last kinematics formula

     a = (sf^2 - si^2) / 2d          d = (sf^2 - si^2) / 2a
  • sf = final speed
  • si = initial speed
  • d = distance traveled
  • a = acceleration rate


Example 1) A supersonic jet travelling at 400 m/s accelerate to 750 m/s at a rate of 18 m/s^2. What distance does it cover during this time?

     si = 400 m/s     sf = 750 m/s      a = 18 m/s^2

     d = [(750 m/s) ^2 - (400 m/s)^2] / 2 (18 m/s^2) = 11, 180.55 m




Example 2) A race car travels 800 m while acceleration at the rate of 5 m/s^2. If its initials speed was 30 m/s. What was it final speed?


     sf = si + at     a = (sf^2 - si^2)/ 2d

     5 m/s^2 = [sf^2 - (30 m/s)^2 ] / 2 (800 m)

     1600 (5) = [(sf^2 - 900)/ 1600] (1600)

      8000 + 900  = sf^2 -900 +900
   
           8900       = sf^2
          
           √8900     = sf^2
     
          94.34 m/s = sf 



No comments:

Post a Comment